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Abstract: Proportional integral plus feedforward (PI+FF) control was proposed for identifying the pipe temperature in hot water 
heating greenhouse. To get satisfying control result, ten coefficients must be adjusted properly. The data for training and testing the 
radial basic function (RBF) neural-networks model of greenhouse were collected in a 1028 m 2 multi-span glasshouse. Based on 
this model, a method of coefficients adjustment is described in this article. 
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INTRODUCTION 

The objective of greenhouse environment control 
is to create an ideal climatic condition for plant growth. 
The interior air temperature is the most important 
control factor. Generally, heating facilities must be 
installed in the greenhouse in order to make the inte- 
rior air meet the need of the crop in cold days. Hot 
water heating is the prevailing method. In order to 
save energy, precise temperature control is necessary 
(Chalabi et al., 1996). For precise control of interior 
air temperature, it is better to adjust the electric valve 
of the hot water heating pipe according to the desirable 
temperature of the hot water pipe instead of adjusting 
the air temperature directly. Cai (2000) described a 
method to use proportional integral plus feedforward 
(PI+FF) to calculate the pipe temperature. Many co- 
efficients must be identified in this method. Although 
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the coefficients are the key factors for achieving sat- 
isfactory result, most greenhouse operators set the 
coefficients based on their experience and skill and 
constantly face the challenge of determining proper 
coefficients. The reason is that the interaction among 
the factors affecting air temperature in a greenhouse 
and the complexities of the phenomena (multivariable, 
nonlinear, nonstationary) are such that it is often dif- 
ficult to develop a practical prediction model of 
greenhouse air temperature (Frausto and Pieters, 2004; 
Seginer, 1997). Neural networks can act as a curve 
approximator and the design process can be viewed as 
a curve-fitting problem. Hence, a greenhouse tem- 
perature prediction model using neural networks can 
be effective. Some such models presented (Linker and 
Seginer, 2004; Ferreira et al., 2002; Seginer, 1997) 
stimulated an interest in tuning the PI+FF coefficient 
using a neural network model. 

This paper presents a PI+FF controller, a satis- 
factory taeural network temperature prediction model 
and proposes a way to tune the PI+FF coefficients. 
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PROPORTIONAL INTEGRAL CONTROL 

The climatic conditions in a greenhouse comprise 
a complicated dynamic system. Taking into account 
the factors influencing the temperature, five minutes 
was selected as the time increment in analyzing the 
energy transfer from the hot water heating pipe to the 
air in a greenhouse (Davis and Hooper, 1991). 

When ] t2(n) - t2 (n-1) l>_0-  , the proportional 
method is applied by using the following formula to 
calculate the desirable pipe temperature at 5 min from 
now, 

T(n + 1) = T O + kp x [t I (n + 2) - t z (n)] 

where t2(n) is the measured current temperature in the 
greenhouse; t2(n-1) is the temperature in the green- 
house measured 5 min ago; 0- is a given threshold 
value; T(n+l) is the desirable pipe temperature 5 min 
later; To is the set point temperature; tl(n+2) is the 
anticipated temperature in the greenhouse 10 min 
later; and kp is the proportional coefficient. 

The changes of external climatic condition 
strongly influence the inside air temperature. For 
example, the decrease of the temperature outside the 
greenhouse or the increase of the wind speed will lead 
to the decrease of the temperature inside the green- 
house. When the environment-controlling computer 
predicts the inside air temperature based on the out- 
side climate, the control method is defined as "feed- 
forward control" whose computational formulas can 
be represented as 

T(n +1 )=T  o +kp x[tl(n+ 2) - t z (n) l+ T o + Tf + Tz, 

T O =k~ x (t- to) ,  T / = k  z xvy ,  T~ =k 3 x ( l - /0)  

where To, Tf, and Tt represent the respective influ- 
ences of the outside temperature, wind speed and 
solar radiation considered in determining the future 
pipe temperature value; kl, k2 and k3 are the corre- 
sponding coefficients; t is the outside temperature; to 
is the reference outside temperature (for zero correc- 
tion); vf is the wind speed; l is the solar radiation 
intensity and 10 is the reference radiation. 

When It2(n)-t2(n-1)[<0-, the integral process 
begins in order to remove the steady offset caused by 
the proportional control, with the formula for calcu- 

lating the pipe temperature being: 

T(n + 1) = T(n) + T~ 

When It2(n)-tl (n+ 2 )l> 0-1 

t I (n) > t 2 (n) 

t I (n) < t 2 (n) 

When Itz(n)-6(n+ 2 )l<0-1 

T,=0 

where t2(n) is the practical temperature in the green- 
house; tl(n+2) is the expected temperature in the 
greenhouse 10 min later; 0-1 is the threshold value; 6]- 
is the integral intensity; and 6(n) is the desired tem- 
perature at the present time. 

The parameters which must be confirmed in the 
above computational process are To, kp, kl, k2, k3, to, lo, 
8i, 0- and o-1. Each parameter has a specific physical 
meaning and can influence the control results sig- 
nificantly. They all can be adjusted by taking into 
account the expected air temperature, greenhouse air 
temperature, pipe temperature, wind speed, intensity 
of  solar radiation and the external temperature in an 
effort to obtain a better control effect. By means of  a 
neural network model, the control results can be 
simulated on a computer to provide an effective way 
to adjust the parameters. 

RBF NEURAL-NETWORK MODEL 

Radial basic function (RBF) neural-networks 
proposed by Moody and Darken (1988) in the 1980's 
were feedforward networks with a singular hidden 
layer and belong to the group of partly approximating 
networks with advantages of good function ap- 
proximating capability and training rate, and were 
shown to be able to approximate any multivariate 
continuous function relatively well. 

An RBF network with several inputs and single 
output was established to deal with the change of the 
greenhouse air temperature which depends on many 
factors. The topological structure is shown in Fig.1. 
The network consists of three layers, namely the input 
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layer, radial basic function hidden layer and output 
layer. The input part does not transform the signals 
but only dispatches the input vector to the radial basic 
layer. The function in a hidden layer node (also called 
nucleus function) responds partly to the input signals, 
i.e. when the input function is close to the center 
range of the nucleus function, the hidden layer will 
produce a larger output. Under these conditions, Goss 
function was chosen as the RBF for this study. It was 
decided by the following two parameters: the field 

center cj and the field width aj. The output layer is a 
set of linear combiners with weights. 
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Fig.1 R B F  network topological structure 

Orthogonal least squares (OLS) proposed by 
Chen e t  a1.(1991; 1992) has been widely used in 
training RFB networks; and can be used to calculate 
the connection weight, number of the hidden layer 
nodes, field centers of  the hidden layer nodes, and the 
offset (W0) at the same time. 

Experimental data were collected in a commer- 
cial multi-span glass greenhouse built by the Shang- 
hai Dushi Green Engineering Corporation for the 
Zhejiang University Research Center of  Vegetable 
Science (Hangzhou, China). The floor area is 1028 m 2. 
Natural ventilation windows, curtains, wet pad, 
hot-water heating system etc. were installed in the 
greenhouse. Priva in Holland supplied the electric 
system and the computer control system. The sensors 
included a dry bulb and wet bulb thermometer placed 
in the greenhouse center to measure the inside air 
temperature and humidity, a temperature sensor at- 
tached to the exterior surface of the water pipe, and an 
angle sensor to measure the degree of roof window 
opening. An outdoor weather station was installed to 
gather outdoor radiation, temperature, wind speed, 
and wind direction data. 

Data were collected and saved in the computer 
every 5 min during running period of the control 

system. The greenhouse is almost empty except for 
several basins of paddy in it. The 1240 sets of data, 
obtained from 00:00 on April 1 to 07:10 on April 5 in 
2003, included the outside temperature, wind speed, 
solar radiation, opening-angle of roof window, cover 
ratio of  the inside curtain, hot-water pipe temperature, 
inside temperature and inside humidity, and were 
selected for study. For each training step, the input to 
the neural network included the current values of the 
above variables plus the values of the inside air tem- 
perature from one interval and two intervals ago. The 
input data were normalized before they were entered 
into the neural network. The formula used for the 
normalization process is as follows: 

1 x i - 
Y i - -  

2 Xm~ x - X m i  n 

where x; is the measured value; 2 is the mean of all 

measured values; Xmax is the maximum; and Xmin is the 
minimum. All DC terms were subtracted from signals, 

which were then scaled to amplitude one, [-0.5, 0.5] 
interval. The temperature one interval ahead was 
selected as the output of the neural network. The first 
500 datasets were used as the training set and the 
remaining as testing set. The air temperature predic- 
tion model was developed in MATLAB environment. 
A satisfactory result was obtained when the hidden 
nodes width was chosen as 30, the energy error 
specified as 0.02 (the root mean square error was 
0.0073). The test result is shown in Fig.2, with the 

errors arranged from -0.55 ~ to 0.64 ~ 
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Fig.2 Predicted and observed inside air temperature 

SETTING OF COEFFICIENTS 

The coefficients setting program was also de- 



268 Yu et al. I J  Zhejiang Univ SCI 2005 6/1(4):265-269 

signed in MATLAB. It included 8 parts: inputting the 
data, training neural network, initializing control 
coefficients and the state of the greenhouse, calcu- 
lating the temperature inside the greenhouse by 
means of the neural network model after entering the 
loop, calculating the pipe temperature of the next state 
through PI+FF, saving data, updating the green- 
house's state, exiting the loop when the specified 
number of loops was met and outputting the results by 
diagram. The input data included the measured values 
of all factors affecting the air temperature in the 
greenhouse as described above (temperature value 
and their normalized values expected). The envi- 
ronmental state at 00:00 and the expected inside air 
temperature at 00:10 on April 4th, 2003 were initial- 
ized. Then the pipe temperature at 00:05 was calcu- 
lated using PI+FF. In the first loop, taking the envi- 
ronmental factors at 00:05 as the input vector, the 
neural network calculated inside air temperature at 
00:10. In the process of saving data and updating state 
variables, the Output of neural network was first saved 
into the data table, then the pipe temperature at 00:l0 
was calculated; finally the states of the greenhouse 
and weather at 00:10 were brought in. These data 
would be used in the next loop as the input vector to 
the neural network. 

Throughout an entire day, 288 sets of data were 
collected (at 5 min intervals). Fig.3 shows the external 
climatic conditions and the simulated control results 
based on the coefficients shown in Table 1. In Fig.3a, 
the dashed line represents the anticipated inside air 
temperature from 00:10 to 24:10 and the solid line 
shows the inside air temperature simulated by the 
neural-network model. The coefficients shown in 
Table 1 were obtained by tuning them to "best" match 
the solid line with the dashed line. Fig.3b illustrates 
the hot-water pipe temperature from 00:05 to 24:00, 
which was derived by PI+FF. Figs.3c-3e show the 
external wind speed, external air temperature and 
solar radiation intensity respectively, from 00:05 
April 4th to 00:00 April 5th, 2003. 

The neural-networks greenhouse model refers 
to only existing structure and depends on special data, 
so, it is important to avoid extrapolations. But the 
coefficients identified by the model can be used in 
calculating the hot water pipe temperature in different 
climate. 
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Fig.3 Outside climate and simulated control result 
(a) Inside air temperature (~ (b) Pipe temperature (~ (c) 
Wind speed (m/s); (d) Outside temperature (~ (e) Radiation 
intensity (W/m) 
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Table 1 The coefficients set from the model 

Coefficient Value Unit 

Pipe basic temperature To 20 ~ 

Proportional coefficient kp 8 - 

Outside temperature 3 - 
adjusting k 1 

Wind speed adjusting k2 1 ~ 1) 

Solar radiation adjust k3 -0.01 ~ 2) 

Outside temperature 8 ~ 
adjusting threshold to 
Solar radiation adjusting 50 W/m E 
threshold 10 

Integral intensity fi/ 2 ~ 

Inside air steady threshold cr 0.1 ~ 

Error threshold crl 0.3 oC 

CONCLUSION 

1. Temperature control in a greenhouse is chal- 
lenging due to the influence of  many factors. In this 

article, PI+FF control methods were used to calculate 

the pipe temperature in the hot-water heating system. 

They have been proven to be effective. 
2. RBF, used in conjunction with properly cho- 

sen input vector, can be used to establish a prediction 

model of  temperature in a greenhouse. The model can 

be used for setting parameters. 
3. The parameters-setting method proposed in 

this article can provide a basis for studying intelligent 

control strategies. For example, the genetic algorithm 

can be used to set parameters on-line. 
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